

Norgren Impact System

Impact cylinders used for cleaning of heating surfaces at industrial- and waste incineration plants

Cleaning Heating Surfaces of Incinerators

Existing Techniques

Mechanical drop hammer system

Electro-pneumatic impact wagon

Alternative

Pneumatic Single Rapping

Demand of the customers

Optimization of the cleaning system

» Optimal cleaning of the heat exchange surfaces to optimize the absolute efficiency

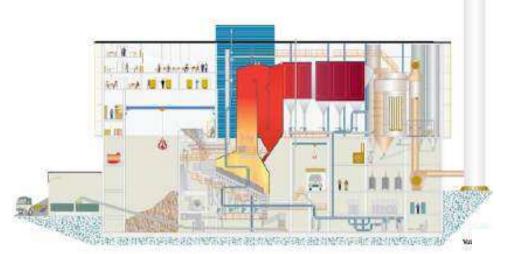
Subsequent and Individual adjustment of the impact force

» Reducing maintenance costs

» Reducing the construction volume

» Feedback to control room of the cleaning activity

Check the wear and inform about failures


» Process stability

» Guarantee maximum travel time

Key Advantages of Norgren Impact System

- » Optimal cleaning
 - » Extend the maximum travel time of the plant
 - » Guarantee high overall efficient
 - » Maximize the waste throughput
- » Keep an "Eye" into the boiler
 - » Check the wear and inform about failures
- » Subsequent adjustment of the cleaning system to your plant
 - » In- / decrease the impact force
 - » Change the iteration of the cylinder groups
- » Nearly no maintenance and no spare and wear parts
- » Comfortable operation and feedback to the control room

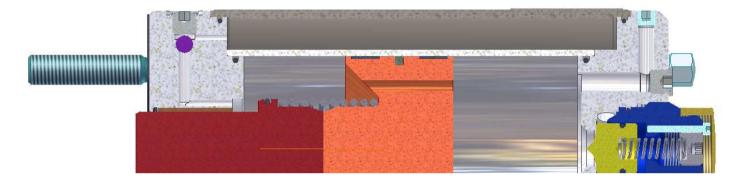
Mechanical Drop Hammer System

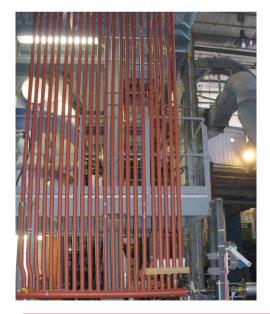
- » No individual triggering of the rapping groups
- » High wear due to mechanical moving parts → maintenance costs
- » High noise level → sound absorption necessary
- » Significant process failure → single failure stops complete system
- » Large construction volume
- » No oscillation of tube bundles possible

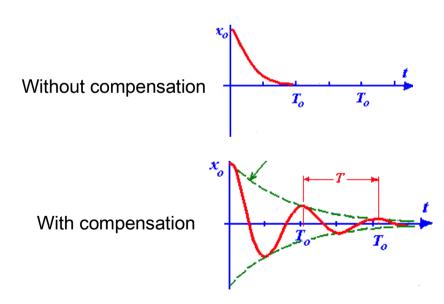
Electro-pneumatic Impact Wagon

- » Large construction volume
- » No individual triggering of rapping groups
- » High wear due to moving wagon→ maintenance costs
- » Significant process failure of wagon→ single failure stops complete system
- » No control that the impact cylinder hits the plunger
- » No feedback to remote monitoring station
- » Start up problem with limit switch adjustment → complex commissioning

Pneumatic Single Position Rapping




- » Individual adaptation of impact force for each point
- » Wear indicators
- » Check the wear and inform about failures
- » Low noise level
- » High process reliability
- » Low maintenance cost and just a few spare and wear parts



Force Compensation

» Force reduction in the end position leads to better vibrations on the pipes

Extension Operating Time

Insufficient removal

(mechanical drop hammer and impact wagon systems)

Optimum removal with controlled resudial deposit*

Poor or no removal

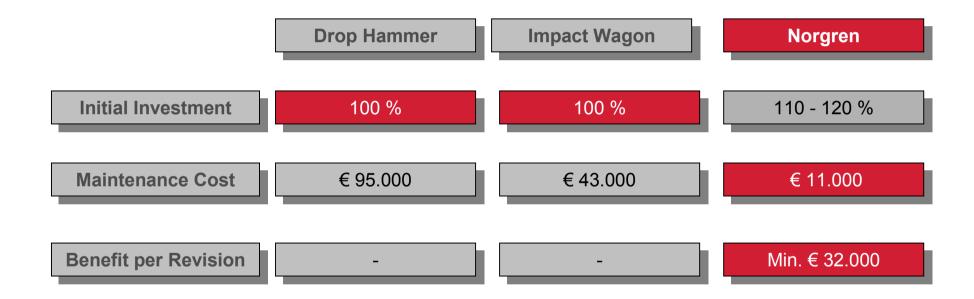
Extension Operating Time > 30%*

*Result of a comparison, Waste-to-Energy Plant Switzerland

Example for used tube bundles

Old fashioned rapping system

- » Polluted heating tubes
- » Gas flue is blocked
- » Bad heat exchange
- » Low efficiency


Gas flow

Single position rapping

- Cleaned tubes
- » Gas flue is not blocked
- » Optimal heat exchange
- » High efficiency

Cost Benefits

Reference List for Impact System

Germany:

- » MVA Leuna Kessel I + II
- MVA Sonne (Großräschen)
- MVA Premnitz
- » MVA Hameln
- » MVA Herten
- » MVA Köln

International:

- MVA Dürnrohr Boiler 1 + 2
- MVA Dürnrohr Boiler 3
- » MVA Pfaffenau
- » MVA Amsterdamm
- KEBAG Emmenspitz,
- KVA Chevenez, Genf
- KVA Turgi Aarau

(Austria)

(Austria)

(Netherlands)

(Switzerland)

(Switzerland)

(Switzerland)

Actual Projects installed in 2009

» Dürnrohr 3 146 cylinders

» Hameln 216 cylinders

» MVA Mannheim 158 cylinders

» Delfzijl 1 + 2 416 cylinders

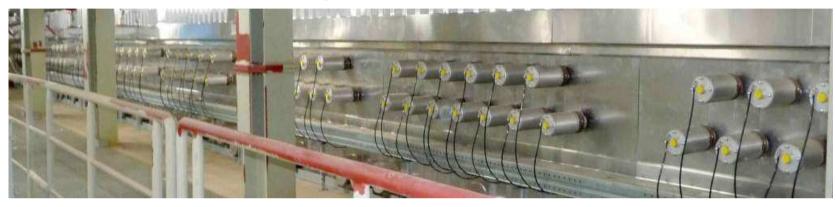
Project Delfzijl Boiler 1+2

Boiler 1 + Boiler 2 == 416 cylinders


Project Delfzijl Boiler 1+2

Control cabinets for Boiler 1

Master 104 valves


Slave 104 valves

Project Delfzijl Boiler 1+2

Left wall of boiler 1 → 104 cylinders

Right wall of boiler 1 → 104 cylinders

Contact

- » Market Manager
 - » Alexander Haug Mobile +49 (0) 170 / 9130305 Alexander.Haug@norgren.de

www.norgren.com

